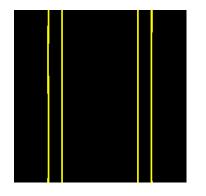
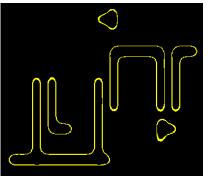


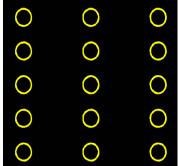
Impact of Resist Parameters on Stochastic EUV Printability Failures

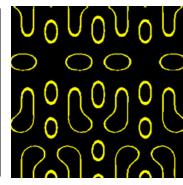
Kenji Hoshiko^a, Andreia Santos^a, Xavier Buch^a, Motohiro Shiratani^b, Takehiko Naruoka^b, Tomoki Nagai^b, Peter De Bisschop^c

^a JSR Micro N.V., ^b JSR Corporation, ^c Imec

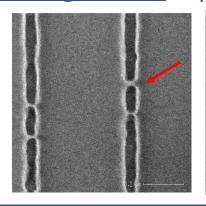


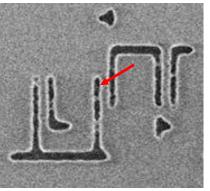


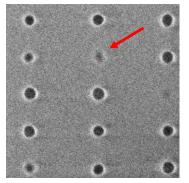

Stochastic Printability Failures

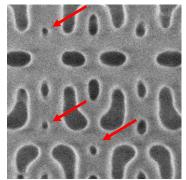

Examples from a Logic 10 nm node Local-Interconnect layer

OPC calibration says OK, but ...








Simulated PV band

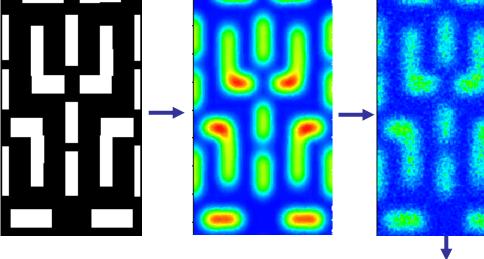
Printing Failures happen

Patterned Wafer

We attribute those issues to the stochastic effects in EUV.

Where do these stochastic effects come from?

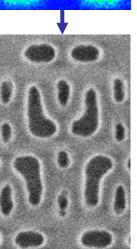
Mask after OPC


Image intensity

= photon-absorption

Actual absorbed photons/nm³

Dose


High dose

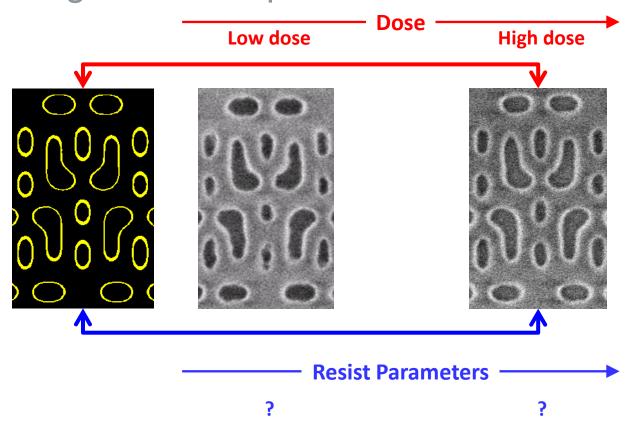
Our previous study revealed those failures decrease at higher dose.

→ Photon Shot Noise does impact.

But: this is not the only cause

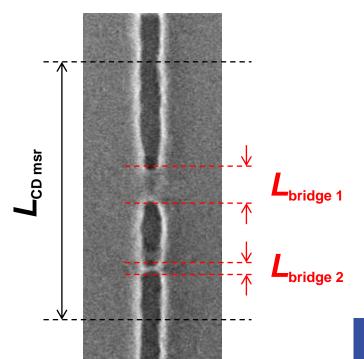
Low dose

Peter De Bisschop et. al., SPIE 2014, 9048-8


Oct 27, 2014 Washington, D.C.

Goal of this Study:

Investigate also impact of Resist Parameters


High dose requires throughput reduction → Not preferable.

Therefore we explored other path in resist parameters.

Quantification of Printability Failures

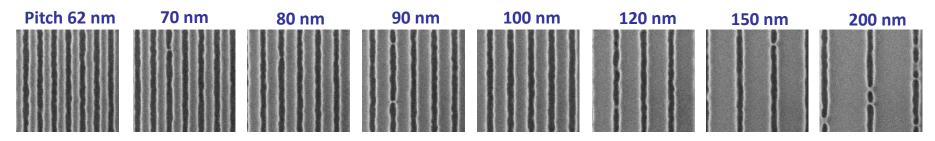
The amount of local bridging in trench arrays is used to assess the probability of the printability failures.

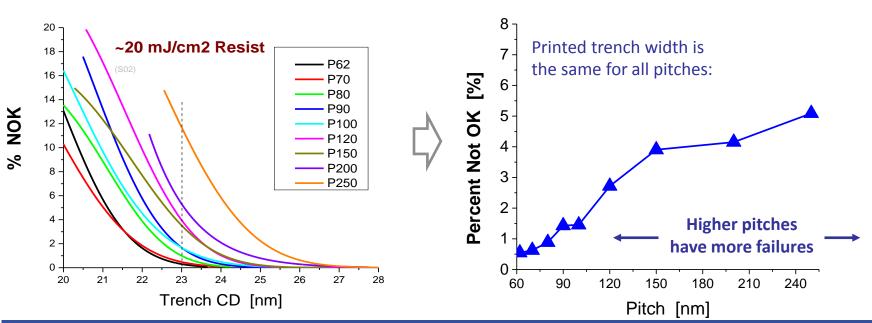
It can be quantified from;

- 1. Length along which the CD is measured $\,\,\cdots\,\,L_{\sf CD\,ms}$
- Total length of bridges in this area

$$\frac{\sum \{L_{\text{bridge 1}} + L_{\text{bridge 2}} + \cdots\}}{L_{\text{CD msr}}} = \text{NOK (\%)}$$

Taking statistics over multiple images

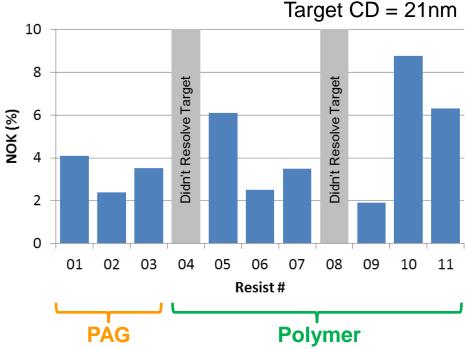

Peter De Bisschop et. al., SPIE 2014, 9048-8


Evaluation Feature

Peter De Bisschop et. al., SPIE 2014, 9048-8

NOK(%) thru pitch

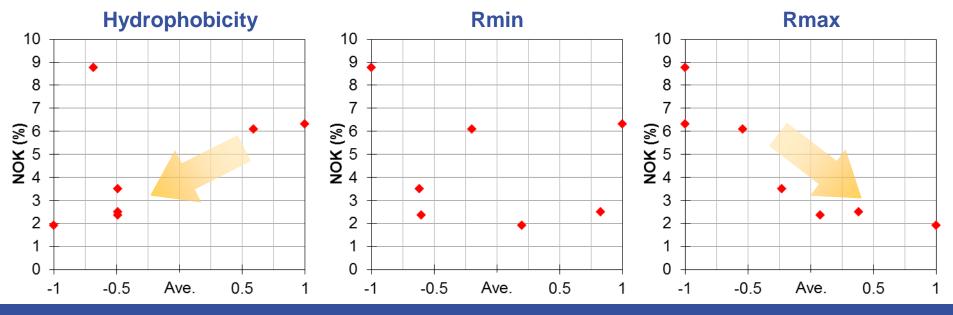
NOK(%) @ CD target


We decided to qualify resists at 21nm CD through pitch 120-250nm

Resists & Results

Resist #	Polymer	PAG	Quencher	DtS (mJcm ²)	
Resist 01	Polymer-A	PAG-A	Q-A	33.5	
Resist 02	Polymer-A	PAG-B	Q-A	34.2	
Resist 03	Polvmer-A	PAG-C	Q-A	33.3	
Resist 04	Polymer-B	PAG-B	Q-A	34.6	
Resist 05	Polymer-C	PAG-B	Q-A	34.6	
Resist 06	Polymer-D	PAG-B	Q-A	36.4	
Resist 07	Polymer-E	PAG-B	Q-A	35.1	
Resist 08	Polymer-F	PAG-B	Q-A	35.1	
Resist 09	Polymer-G	PAG-B	Q-A	36.9	
Resist 10	Polymer-H	PAG-B	Q-A	30.6	
Resist 11	Polymer-I	PAG-B	Q-A	31.9	

- 11 different resists with a similar DtS were evaluated to look into the impact of PAGs and polymers.
- Polymer does clearly have an impact on NOK.

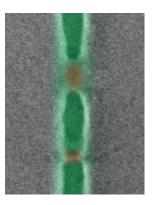


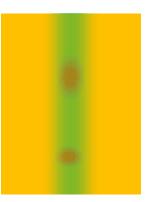
Polymer Parameters vs. NOK

*Normalized range around the average

Resist #		510				
	name	Hydrophobicity*	Rmin*	Rmax*	PAG	Quencher
Resist 02	Polymer-A	-0.488	-0.600	0.077	PAG-B	Q-A
Resist 05	Polymer-C	0.594	-0.200	-0.538	PAG-B	Q-A
Resist 06	Polymer-D	-0.488	0.829	0.385	PAG-B	Q-A
Resist 07	Polymer-E	-0.488	-0.620	-0.231	PAG-B	Q-A
Resist 09	Polymer-G	-1 (lowest)	0.200	1 (highest)	PAG-B	Q-A
Resist 10	Polymer-H	-0.685	-1 (lowest)	-1 (lowest)	PAG-B	Q-A
Resist 11	Polymer-I	1 (highest)	1 (highest)	-1 (lowest)	PAG-B	Q-A

The results are suggesting that the resist polymer needs to have lower hydrophobicity, higher Rmax for better NOK.





Interpretation

~ Low Hydrophobicity, High Rmax → Good NOK ~

Given some stochastic failure is <u>locally</u> occurring before development,

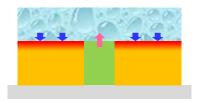
For example

- Optically ; photon displacement, absorption error
- Chemically; acid creation/de-protection failure

Hydrophobicity, Rmax of polymer would play for developer/rinse solvent,

Better case

- Non-exposed area → Higher affinity
- Exposed area → More dissolvable



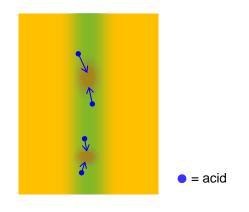
After Patterned

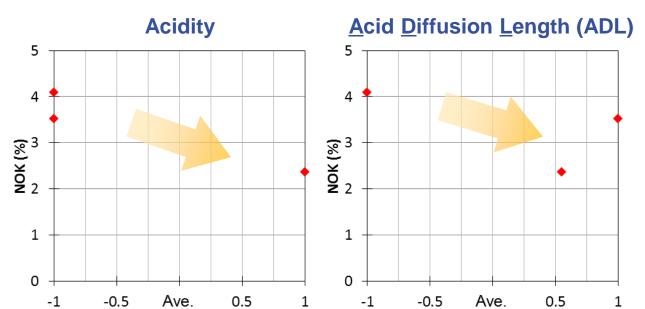
Worse case

- Non-exposed area → Lower affinity
- → Less dissolvable Expose area

During Development

PAG Parameters vs. NOK


*Normalized range from average


Resist #	Polymer		Ou an ah ar		
		name	Acidity*	ADL*	Quencher
Resist 01	Polymer-A	PAG-A	-1 (lowest)	-1 (lowest)	Q-A
Resist 02	Polymer-A	PAG-B	1 (highest)	0.55	Q-A
Resist 03	Polymer-A	PAG-C	-1 (lowest)	1 (highest)	Q-A

Polymer de-protection can be facilitated by,

√ More diffusive acid

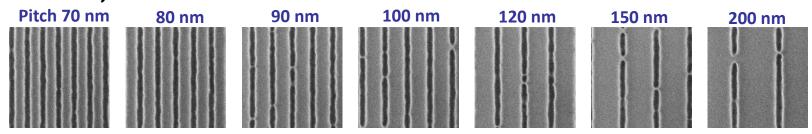
Slight trend on PAG acidity and ADL might (or not) exist. More data points are needed to justify.

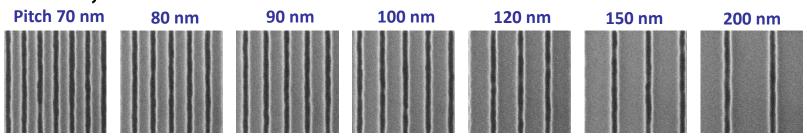
Intermediate Conclusion

Stochastic printability failures (=NOK % in this study) becomes better if the resist has following parameter,

- In polymer,
 - Lower hydrophobicity
 - Higher Rmax
- In PAG (possibly),
 - Higher acidity
 - Longer acid diffusion length

In practical case of resist 09 vs. 12, we found the better NOK with improving resist sensitivity.

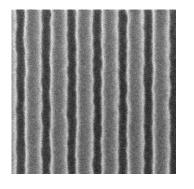

Resist #	Polymer				PAG			Quencher
	name	Hydrophobicity	Rmin	Rmax	name	Acidity	ADL	Quentitiei
Resist 12	Polymer-H	Higher	Lower	Lower	PAG-A	Lower	Lower	Q-A
Resist 09	Polymer-G	Lower	Higher	Higher	PAG-B	Higher	Higher	Q-A

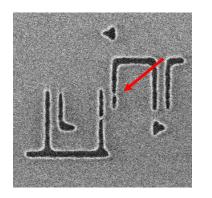


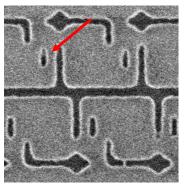
SEM Images in 1D structures

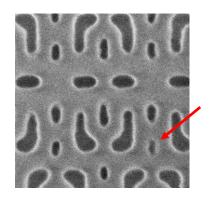
Resist 12, DtS 40.0 mJ/cm²

Resist 09, DtS 36.9 mJ/cm²

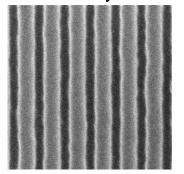

Resist 09 showed better 1D trench printability than Resist 12 with higher sensitivity.

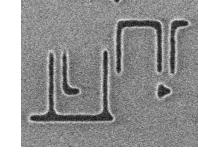


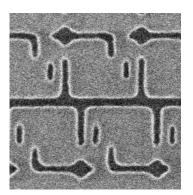


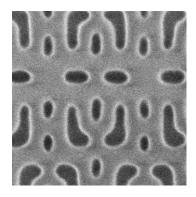

SEM Images in 2D structures

Resist 12, DtS 40.0 mJ/cm²



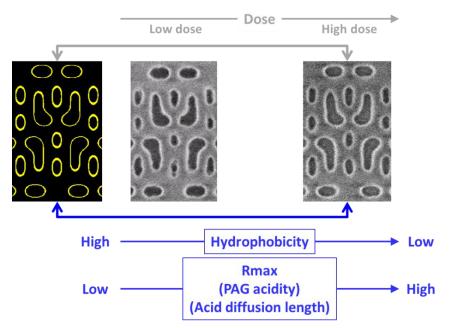






Resist 09, DtS 36.8 mJ/cm²

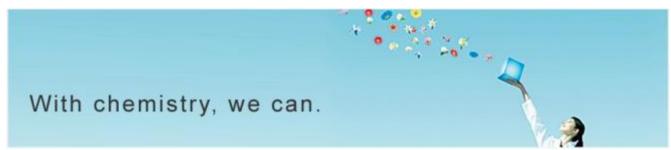
21 nm ~Dense trenches: both OK


Resist 09 showed better 2D trench & hole printability than Resist 12 with higher sensitivity.

Summary

- Stochastic printability failures are one of the concerns for the processing on EUV.
- A dose increase can mitigate this problem, but it of course causes a throughput reduction.
- Our current research shows that also a proper choice of resist parameters helps reduce these printing failures

Acknowledgement


- Alessandro Vaglio Pret, John Biafore, Mark Smith (KLA-T)
- Daisuke Fuchimoto, Kei Sakai (Hitachi HT)
- Yuhei Kuwahara, Kathleen Nafus (TEL)
- Geert Vandenberghe, Eric Hendrickx, Mieke Goethals, (imec)
- ASML/EXTREMETEC team at imec, for support of NXE3100 exposure

Materials Innovation

